tesselation$500208$ - определение. Что такое tesselation$500208$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое tesselation$500208$ - определение

TYPE OF PLANE PARTITION
Dirichlet domain; Voronoi tesselation; Dirichlet tessellation; Voronoi Diagram; Voronoi tessellation; Voronoi diagrams; Voronoi decomposition; Voronai tessalonations; Voronoi polygon; Thiessen polygon; Voronoi cell; Dirichlet tesselation; Thiessen polygons; Voronoid diagram; Voronoi partition; Thiessen method; Voronoi map; Voronoi net; Dirichlet cell; Voronoi Tessellation; Voronoi cells; Voronoi pattern; Voronoy Tessellation; Applications of Voronoi diagrams
  • A Voronoi tessellation emerges by radial growth from seeds outward.

Power diagram         
  • A power diagram of four circles
  • The radical axis of two intersecting circles. The power diagram of the two circles is the partition of the plane into two halfplanes formed by this line.
  • The power of a point ''P'' outside of a given circle
PARTITION OF THE EUCLIDEAN PLANE
In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from a set of circles. The cell for a given circle C consists of all the points for which the power distance to C is smaller than the power distance to the other circles.
Voronoi polygon         
<mathematics, graphics> For a member s of a set S of points in a Euclidean space, the locus of points in the plane that are closer to s than to any other member of S. (1997-08-03)
Voronoi diagram         
<mathematics, graphics> (Or "Voronoi tessellation", "Voronoi decomposition", "Dirichlet tessellation", After {Georgy Feodosevich Voronoy}) For a set S of points in a {Euclidean space}, the partition Vor(S) of the plane into the {voronoi polygons} associated with the members of S, where each polygon is defined by the set of points nearer to some given point in S than to any other point in S. The Voronoi diagram is the dual of the {Delaunay triangulation} of S. (2008-04-18)

Википедия

Voronoi diagram

In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation.

The Voronoi diagram is named after mathematician Georgy Voronoy, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a Dirichlet tessellation (after Peter Gustav Lejeune Dirichlet). Voronoi cells are also known as Thiessen polygons. Voronoi diagrams have practical and theoretical applications in many fields, mainly in science and technology, but also in visual art.